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The derivation of kinetic equations, including the effects of pair correlations, 
for a gas of particles interacting via purely repulsive forces is reported. An 
additional assumption on the form of the two-particle distribution function 
yields the Enskog equation for a dense hard-sphere gas. However, the true 
two-particle distribution function is not of this form. 
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Recently a new derivation o f  the Bol tzmann transport  equation has been 
presented (1,2~ which has several advantages over existing ones. In  particular, 
the method can be extended to yield equations o f  more  generality than the 
s tandard Bol tzmann equation. In this note we report  one such generalization, 
namely the inclusion of  pair correlations for the case o f  purely repulsive 
interactions of  short  range. 

To state these new equations we denote the reduced one-particle dis- 
tr ibution function for a gas o f  N particles by fl(1) = f l ( r l ,  pl ,  t) and write 
the two-particle distribution function as 

f2(1, 2) = f2(r l ,  Pl,  r2, P2, t) = f l (1)f l (2)  + e(1, 2) (1) 
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where rl ,  r2,..., rN and Pl, P2,..., PN are the positions and momenta of the N 
particles of time t. In addition let 

H(1)(1) = p12/2m, H(m(1, 2) = p~2/2m + p22/2m + VI2 (2) 

be the one- and two-body Hamiltonians, respectively, where the interparticle 
potential V12 = V(rz - r2) is assumed to be purely repulsive and of short 
range, and let [X, Y] denote the Poisson bracket defined by 

[X(1, 2,..., N), Y(1, 2 ..... N)] = ~ aPz art (3) 
l = 1  

Let bij be the impact-parameter vector of a binary collision between particles 
i and j with relative speed vii. The post-collision configuration (r~, p,, U, PJ) 
is assumed to be given; it is such that [r~ - U[ = ro (the range of the inter- 
action) and (r~ - U)'(P~ - PJ) > 0. The pre-collision configuration 
(r,', p(, r / ,  p/) is obtained by tracing backward in time across the collision 
sphere, all other particles being assumed to be outside range of particles i and 
j, until we reach the entrance to the collision sphere. The "free-drift pre- 
collision configuration" (r~, p~, r~, p;!) is obtained similarly, but in the tracing 
back process the interaction potential V,j is also set to zero, i.e., the paths 
are straight lines. We shall denote the two pre-collision configurations by 
i ' , j '  and i",j", respectively, for short. Then the functions f,(1) and c~(1, 2) 
satisfy the pair of integrodifferential equations 

OA(1)/Ot :-[u(1),H~'] + f d3p3 f d2b~3 
• vla(u(l')u(3') - u(l")u(3") + ~(1', 3') - ~(1", 3")} (4) 

~a(1, 2)/Dt = - [~(1, 2), H (m] - [u(1)u(2), V~2] 

+ f d% f d~b~v~{=(1, Z')u(3 ') 
- a(1, 2")u(3") + a(1, 3')u(2') - or(l, 3")u(2")} 

+ (1 ~- 2) (5) 

where (1 ~-~ 2) indicates the double integral of the same form with the roles 
of particles 1 and 2 interchanged, and where the function u is related to f ,  
and a by 

u(1) = f~(1) - ( a(1, 2) dr2 (5a) 
o r  < t  0 

The distance r0 is the range of the interaction, u differs f romf ,  by omission 
of that contribution from f ~(1, 2) dr2 in which particles 1 and 2 are within 
range of one another. 
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A full derivation of these equations will be given elsewhere and we only 
give a brief outline here. The basic assumption is a generalization of the 
ansatz of Blatt and Opie (1,2) for the N-particle distribution function at time t 
to the form (assuming N even) 

FN(1, 2,..., N; t) = CN{g(1)g(2) ... g (N)  

+ h(1, 2)g(3)-.. g(N)  + permutations 

+ h(1, 2)h(3, 4)g(5) ---g(N) + permutations 

+ ... 

+ h(1, 2)h(3, 4) ... h(N - 1, N )  + permutations} (6) 

where CN is a normalization constant and the functions g(1) and h(1, 2) can 
be related to fl(1) and f2(1, 2) by the standard definitions of the reduced 
distribution functions. As in the earlier work, one now allows FN to evolve 
following the N-particle Liouville equation for a time interval At, which is 
(a) appreciably longer than the duration of a collision, but (b) much shorter 
than the mean free time between collisions. After this time interval, FN will 
no longer be of the form (6). However, it is possible to find functions g(1) 
and h(1, 2) such that FN can be approximated by the form (5) at time t + At 
and still yield the correct one- and two-particle distribution functions. This 
procedure yields equations for 

and 

Ag = g(r~, p~, t + At) -- g(r~, Pl, t) (7a) 

Ah = h(rl, Pl, r2, P2, t + At) - h(r~,pl,  r2, P2, t) (7b) 

Equations (4) and (5) then follow by a series of further approximations, which 
amount to neglecting all ternary and higher-order collisions (i.e., three or 
more particles interacting at the same time) and approximating time deriva- 
tives by differences over At. 

In conclusion we make several comments on Eqs. (4) and (5) and their 
immediate consequences. 

(i) Since in the absence of external forces 

[fl(1), H (~)] = (pl/m). Vrlf~(r~, pl, t) (8) 

we recover the standard Boltzmann equation if ~ - 0, which is seen, via (1), 
to be equivalent to the molecular chaos assumption on f2(1, 2). We note that 
the integral f f  or(l, 2) dr~ d~-2 is of order N, not of order N 2. Thus this integral, 
and all effects involving ~(1, 2), becomes zero in the so-called Boltzmann- 
Grad limit. <a'4) 
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(ii) On the other hand, if we assume that ~(1, 2) is of the form 

or(l, 2) = fl(1)fl(2)[ Y(R12) - 11 (9) 

where R12 = (rl + r2)/2 is the center-of-mass position vector of particles one 
and two and the function Y is independent of momenta, (4) becomes 

8f~ + Pl V , l f  ~ = dapa d b~svla[Y(R~a)f , (1 )f1(3 ) 
8t m" 

- Y(R~a)fl(1)f~(3)] (10) 

If  we now specialize to a hard-sphere interaction, this result reduces to 
Enskog's equation for a dense hard-sphere gas. (5,m 

(iii) However, as several authors have noted (see, e.g., Chapman and 
Cowling(6)), the Enskog theory is insufficient to describe the effect of pair 
correlations on transport properties. This failure can be traced back to the 
inadequacy of assumption (9). Indeed, one can use (5) to show that ~r(1, 2) 
contains extremely strong correlations between the vectors r~2 = r2 - r~ and 
P12 = P2 - P~- Hence (r(1, 2) cannot be approximated by (9) with Y indepen- 
dent of momenta. Some of the consequences of this observation are elaborated 
in the next paper in this issue. 

(iv) The restriction to binary collisions can be relaxed and the effects of 
ternary and even higher order events included. However the analysis, already 
of some complexity, becomes considerably more difficult. 

(v) Finally, it is informative to note that (4) and (5) can be deduced from 
the BBGKY hierarchy (see, e.g., LiboffF ) Ch. 2.5). To do so we assume FN 
has the form (6) at all times, calculatefa(1, 2, 3) in terms ofg(i) and h(i, j ) ,  and 
thereby truncate the hierarchy. If  again only binary collisions are considered 
and the collision terms reduced in the standard way (see, e.g., Liboff, (7) 
Ch. 4.3) to Boltzmann-like collision integrals, (4) and (5) result with f2 related 
to cr by (1). This truncation procedure is different from other schemes, for 
example, the Rice-Allnatt theory (see, e.g., Rice and Gray, ~8) Ch. 5), where the 
hierarchy is truncated by a "molecular chaos" assumption of f a(1, 2, 3) 
directly. The resulting equations (4) and (5) are consequently significantly 
different from the Rice-Allnatt equations (ignoring their soft-attractive 
potential contributions). The application of the former equations to the 
transport properties of moderately dense gases and fluids will be reported in 
subsequent publications. 

However, it should be stressed that the original method of derivation 
outlined above possesses important advantages over the alternative derivation 
from the BBGKY hierarchy. These include the possibility of extension to 
systems containing attractive forces capable of forming bound states, as well 
as allowing for ternary and higher order collisions. 
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(vi) The referee has called our attention to related work by Kritz et al. (9~ 

and Pomeau. (1~ Their method of approach differs from ours, and so does 
their result. To obtain their theory from ours, it is necessary to omit the 
collision integrals in our Eq. (5). These collision terms allow for modification 
of a scattering correlation by subsequent collisions of particle 1 or 2 with other 
particles in the gas. It is the absence of these terms which causes the correlation 
peak in Ref. 9 to remain at constant height as time goes on (see Fig. 2, p. 320, 
of Ref. 9). In our theory, this peak height decays exponentially, following the 
law: exp[ •  + g2)(r12/v12)], where gl is the inverse mean free time of 
particle 1, momentum pl, against collision with other particles, and similarly 
for g2. 

The paper by Pomeau is written very lucidly, and it is therefore possible 
to locate the source of the difference precisely. In his Appendix A he uses an 
approximation for the three-particle reduced distribution function f3. As he 
says: "The  condition (A1) expresses that, in the low density limit, the binary 
correlations arise from the direct interaction between particles only, and that 
any effect of the surrounding particles on this corgelation is of a lowest order 
in n." Because of the omission of the effect of surrounding particles, Eq. (2.14) 
in Ref. 10 needs to be corrected by a multiplicative factor, equal to the proba- 
bility that the point r in his region 2~1 can be reached without intercepting 
some other scattering center on the way. This is the origin of our exponentially 
decaying factor. 

Pomeau's main conclusion, that the hydrodynamic modes lead to 
infinite-range correlations, can be traced to this omission; in our theory 
~(1, 2) has a finite range under all conditions. 
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